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1     Introduction 
Because of the increasing density of VLSI integrated cir- 
cuits, most of the chip area of modern computers is now 
occupied by memory and not by processing resources. 
The M-Machine is an experimental multicomputer be- 
ing developed to test architecture concepts which are 
motivated by these constraints of modern semiconduc- 
tor technology and the demands of programming sys- 
tems, such as faster execution of fixed sized problems 
and easier programmability of parallel computers. 

Advances in VLSI technology have resulted in com- 
puters with chip area dominated by memory and not 
by processing resources. The normalized area (in A ) 
of a VLSI chip1 is increasing by 50% per year, while 
gate speed and communication bandwidth are increas- 
ing by 20% per year [10]. As a result, a 64-bit processor 
with a pipelined FPU (400MA2) is only 11% of a 3.6GA2 

1993 0.5/mi chip and only 4% of a 10GA2 1996 0.35pm 
chip. In a system with 64 MBytes (256 MBytes in 1996) 
of DRAM, the processor accounts for 0.52% (0.13% in 
1996) of the silicon area in the system. The memory 
system, cache, TLB, controllers, and DRAM account 
for most of the remaining area. Technology scaling has 
made the memory, rather than the processor, the most 
area-consuming resource in a computer system. 

To address this imbalance, the M-Machine increases 
the fraction of chip area devoted to processor, to 
make better use of the critical memory resources. An 
M-Machine multi-ALU processor (MAP) chip contains 
four 64-bit three-issue clusters that comprise 32% of the 
5GA2 chip and 11% of an 8 MByte (six-chip) node. The 
multiple execution clusters provide better performance 
than using a single cluster and a large on-chip cache in 
the same chip area. The high ratio of arithmetic band- 
width to memory bandwidth (12 operations/word) al- 
lows the MAP to saturate the costly DRAM bandwidth 
even on code with high cache-hit ratios. A 32-node 
M-Machine system with 256 MBytes of memory has 
128 times the peak performance of a 1996 uniprocessor 
with the same memory capacity at 1.5 times the area, a 
85:1 improvement in peak performance/area. Even at a 
small fraction of this peak performance, such a machine 
allows the costly, fixed-sized memory to handle more 
problems per unit time resulting in more cost-effective 
computing. 

The M-Machine is designed to extract more paral- 
lelism from problems of a fixed size, rather than requir- 
ing enormous problems to achieve peak performance. To 
do this, nodes are designed to manage parallelism from 
the instruction level to the process level. The 12 func- 
tion units in a single M-Machine node are controlled 
using a form of Processor Coupling [13] to exploit in- 

1The parameter A is a normalized, process independent 
unit of distance equivalent to one half of the gate length [18]. 
For a 0.5nm process, A is 0.25/im. 

struction level parallelism by executing 12 operations 
from the same thread, or to exploit thread-level paral- 
lelism by executing operations from up to six different 
threads. The fast internode communication allows col- 
laborating threads to reside on different nodes. 

The M-Machine also addresses the demand for eas- 
ier programmability by providing a incremental path for 
increasing parallelism and performance. An unmodi- 
fied sequential program can run on a single M-Machine 
node, accessing both local and remote memory. This 
code can be incrementally parallelized by identifying 
tasks, such as loop iterations, that can be distributed 
both across nodes and within each node to run in par- 
allel. A flat, shared address space simplifies naming 
and communication. The local caching of remote data 
in local DRAM automatically migrates a task's data to 
exploit locality. 

The remainder of this paper describes the M- 
Machine in more detail. Section 2 gives an overview 
of the machine architecture. Mechanisms for intra- 
node parallelism are described in Section 3. Section 4 
discusses inter-node communication including the user- 
level communication primitives and how they are used 
to provide global coherent memory access. 

2    M-Machine Architecture 
The M-Machine consists of a collection of computing 
nodes interconnected by a bidirectional 3-D mesh net- 
work, as shown in Figure 1. Each six-chip node consists 
of a multi-ALU (MAP) chip and 1 MW (8 MBytes) of 
synchronous DRAM (SDRAM). The MAP chip includes 
the network interface and router, and it provides an 
equal bandwidth of 800 MBytes/s to the local SDRAM 
and to each network channel. I/O devices may be con- 
nected either to an I/O bus available on each node, or 
to I/O nodes (IONs) attached to the face channels. 

As shown in Figure 2, a MAP contains: four execu- 
tion clusters, a memory subsystem comprised of four 
cache banks and an external memory interface, and a 
communication subsystem consisting of the network in- 
terfaces and the router. Two crossbar switches inter- 
connect these components. Clusters make memory re- 
quests to the appropriate bank of the interleaved cache 
over the 150-bit wide (address+data) 4x4 M-Switch. 
The 90-bit wide 10x4 C-Switch is used for inter-cluster 
communication and to return data from the memory 
system. Both switches support up to four transfers per 
cycle. 

MAP Execution Clusters: Each of the four MAP 
clusters is a 64-bit, three-issue, pipelined processor con- 
sisting of two integer ALUs, a floating-point ALU, as- 
sociated register files, and a 1KW (8KB) instruction 
cache, as shown in Figure 3. One of the integer ALUs 
in each cluster, termed the memory unit, serves as in- 
terface to the memory system.   Each MAP instruction 
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Figure 1: The M-Machine architecture. 
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Figure 3:  A MAP cluster consists of 3 execution units, 2 register files, an instruction cache and ports onto the 
memory and cluster switches. 

contains 1, 2, or 3 operations, one for each ALU. All 
operations in a single instruction issue together but may 
complete out of order. 

Memory System: As illustrated in Figure 2, the on- 
chip cache is organized as four word-interleaved 4KW 
(32KB) banks to permit four consecutive word accesses 
to proceed in parallel. The cache is virtually addressed 
and tagged. The cache banks are pipelined with a three- 
cycle read latency, including switch traversal. 

The external memory interface consists of the 
SDRAM controller and a local translation lookaside 
buffer (LTLB) used to cache local page table (LPT) en- 
tries. Pages are 512 words (64 8-word cache blocks). 
The SDRAM controller exploits the pipeline and page 
mode of the external memory and performs SECDED 
error control. 

A synchronization bit is associated with each word of 
memory. Special load and store operations may specify 
a precondition and a postcondition on the synchroniza- 
tion bit. These are the only atomic read-modify-write 
memory operations. 

The M-Machine supports a single global virtual ad- 
dress space.    A light-weight capability system imple- 

2 Single error correcting, double error detecting 

ments protection through guarded pointers [3], while 
paging is used to manage the relocation of data in phys- 
ical memory within the virtual address space. The seg- 
mentation and paging mechanisms are independent so 
that protection may be ^reserved on variable-size seg- 
ments of memory. The memory subsystem is integrated 
with the communication system and can be used to 
access memory on remote nodes, as described in Sec- 
tion 4.2. 

Communication Subsystem: Messages are com- 
posed in the general registers of a cluster and launched 
atomically using a user-level SEND instruction. Protec- 
tion is provided by sending a message to a virtual mem- 
ory address that is automatically translated to the des- 
tination node identifier by a global translation lookaside 
buffer (GTLB), which caches entries of a global desti- 
nation table (GDT). Arriving messages are queued in a 
register-mapped hardware FIFO readable by a system- 
level message handler. Two network priorities are pro- 
vided, one for requests and one for replies. 

3    Intra-node Concurrency Mechanisms 
The amount and granularity of parallelism varies enor- 
mously across application programs and even during dif- 



ferent phases of the same program. Some phases have an 
abundance of instruction level parallelism that can be 
extracted at compile time. Others have data dependent 
parallelism that can be executed using multiple threads 
with widely varying task sizes. 

The M-Machine is designed to efficiently execute pro- 
grams with any or all granularities of parallelism. On 
the MAP, parallel instruction sequences (H-Threads) are 
run concurrently on the four clusters to exploit ILP 
across all 12 of the function units. Alternatively they 
may be used to exploit loop level parallelism. To exploit 
thread-level parallelism and to mask variable pipeline, 
memory, and communication delays, the MAP inter- 
leaves the 12-wide instruction streams from different 
tasks, V-Threads, within each cluster on a cluster-by- 
cluster and cycle-by-cycle basis, thus sharing the execu- 
tion resources among all active tasks. 

This arrangement of V-Threads (Vertical Threads) 
and H-Threads (Horizontal Threads) is summarized in 
Figure 4. Six V-Threads are resident in the cluster reg- 
ister files. Each V-Thread consists of four H-Threads, 
one on each cluster. Each H-Thread consists of a se- 
quence of 3-wide instructions containing integer, mem- 
ory, and floating point operations. On each cluster the 
H-Threads from the different V-Threads are interleaved 
over the execution units. 

3.1    H-Threads 

An H-Thread runs on a single cluster and executes a 
sequence of operation triplets (one operation for each 
of the 3 ALUs in the cluster) that are issued simultane- 
ously. Within an H-Thread, instructions are guaranteed 
to issue in order, but may complete out of order. An 
H-Thread may communicate and synchronize via regis- 
ters with the 3 other H-Threads in the same V-Thread, 
each executing on a separate cluster. Each H-Thread 
reads operands from its own register file, but can di- 
rectly write to the register file of any H-Thread in its 
own V-Thread. 

H-Threads support multiple execution models. They 
can execute as independent threads with possibly dif- 
ferent control flows to exploit loop-level or thread-level 
parallelism. Alternatively, the compiler can schedule 
the four H-Threads in a V-Thread as a unit to exploit 
instruction level parallelism, as in a VLIW machine. 
In this case the compiler must insert explicit register- 
based synchronization to enforce instruction ordering 
between H-Threads. Unlike the lock-step execution of 
traditional VLIW machines, H-Thread synchronization 
occurs infrequently, only being required by data or re- 
source dependencies, While explicit synchronization in- 
curs some overhead, it allows H-Threads to slip relative 
to each other in order to accommodate variable-latency 
operations such as memory accesses. 

Figure 5 shows an illustrative example of the in- 
struction sequences of a program fragment on 1 and 

2 H-Threads. The program is the body of the inner 
loop of a "smoothing" operation using a 7-point stencil 
on 3-D grid. On a particular grid point, the smoothed 
value is given by u* = u. + axr* + b x (ru + rj + rn 

+ rs + re + rw), where r, is the residual value at that 
point, and ru, rj, rn, rs, rs and rw are the residuals 
at the neighboring grid points in the six directions UP, 
DOWN, NORTH, SOUTH, EAST and WEST respectively. 
In order to better illustrate the use of H-Threads, ad- 
vanced optimization (such as software pipelining) is not 
performed. 

Figure 5(a) shows the single H-Thread program, with 
a 12 long instruction stream which includes all of the 
memory and floating point operations. The weighting 
constants a and b are kept in registers. Figure 5(b) 
shows the instruction streams for two H-Threads work- 
ing cooperatively. Each H-Thread performs four mem- 
ory operations and some of the arithmetic calculations. 
Instruction 7 in H-Thread 0 calculates a partial sum 
and transmits it directly to register t2 in H-Thread 1. 
The empty instruction on H-Thread 1 is used to prepare 
t2 for H-Thread synchronization; H-Thread 1 will not 
issue instruction 7 until the data arrives from H-Thread 
0 as explained below. 

The use of multiple H-Threads reduces the static 
depth of the instruction sequences from 12 to 8. On 
a larger 27-point stencil, the depth is reduced from 36 
to 17 when run on 4 H-Threads. The actual execu- 
tion time of the program fragments will depend on the 
pipeline and memory latencies. 

H-Thread Synchronization 
As shown in the example of Figure 5, H-Threads syn- 

chronize through registers. A scoreboard bit associated 
with the destination register is cleared (empty) when 
a multicycle operation, such as a load, issues and set 
(full) when the result is available. An operation that 
uses the result will not be selected for issue until the 
corresponding scoreboard bit is set. 

Inter-cluster data transfers require explicit register 
synchronization. To prepare for inter-cluster data trans- 
fers, the receiving H-Thread executes an EMPTY op- 
eration to mark empty a set of destination registers. 
As each datum arrives from the transmitting H-Thread 
over the C-Switch, the corresponding destination regis- 
ter is set full. An instruction in the receiving H-Thread 
that uses the arriving data will be not eligible for issue 
until its data is available. 

Four pairs of single-bit global condition code (CC) 
registers are used to broadcast binary values across the 
clusters. Unlike centrally located global registers, the 
MAP global CC registers are physically replicated on 
each of the clusters. A cluster may broadcast using 
either register in only one of the four pairs, but may 
read and empty its local copy of any global CC register. 
Using these registers, all four H-Threads can execute 
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Figure 4: Multiple V-Threads are interleaved dynamically over the cluster resources. Each V-Thread consists of 4 
H-Threads which execute on different clusters. 

conditional branches and assignment operations based 
on a comparison performed in a single cluster. 

The scoreboard bits associated with the global CC 
registers may be used to rapidly synchronize the 
H-Threads within a V-Thread. Figure 6 shows an ex- 
ample of two H-Threads synchronizing at loop bound- 
aries. Two registers are involved in the synchronization, 
in order to provide an interlocking mechanism ensuring 
that neither H-Thread rolls over into the next loop it- 
eration. 

H-Thread 0 computes bar, compares it (using eq) 
to end, and broadcasts the result by targetting gccl. 
H-Thread 1 uses gccl to determine whether to branch, 
marks gccl empty again, and writes to gcc3 to notify 
H-Thread 0 that the current value of gccl has been 
consumed. H-Thread 0 blocks until gcc3 is full, and 
then empties it for the next iteration. Neither thread 
can proceed with the next iteration until both have com- 
pleted the current one. Due to the multicopy structure 
of MAP global CC registers, this protocol can easily be 
extended to perform a fast barrier among 4 H-Threads 
executing on different clusters, without combining or 
distribution trees. 

3.2    V-Threads 

A V-Thread (vertical thread) consists of 4 H-Threads, 
each running concurrently on a different cluster. As 
discussed above, H-Threads within the same V-Thread 
may communicate via registers. However, H-Threads 
in different V-Threads may only communicate and syn- 
chronize through messages or memory. The MAP has 
enough resources to hold the state of six V-Threads, 
each one occupying a thread slot. Four of these slots are 
user slots, one is the event slot, and one is the excep- 
tion slot. User threads run in the user slots, handlers 
for asynchronous events and messages run in the event 
slot, and handlers for synchronous exceptions detected 
within a cluster, such as protection violations, run in 
the exception slot. 

On each cluster, six H-Threads (one from each 
V-Thread) are interleaved dynamically over the cluster 
resources on a cycle-by-cycle basis. A synchronization 
pipeline stage holds the next instruction to be issued 
from each of the six V-Threads until all of its operands 
are present and all of the required resources are avail- 
able [13]. At every cycle this stage decides which in- 
struction to issue from those which are ready to run. 
An H-Thread that is stalled waiting for data or resource 
availability consumes no resources other than the thread 
slot that holds its state. As long as its data and resource 



(a)Single H-Thread 

MEM Unit FP Unit 
1. load ru 

2. load r^ 
3. load rn t2 = ru + rd 

4. load rs t2 = t2 + rn 

5. load re t2 = t2 + rs 

6. load rw t2 = h + re 
7. load r« t2 = t2 + rw 

8. load u» t2 = b x t2 

9. ti = a x r* 
10. ti = ti + t2 

11. u* = u* + ti 
12. store u. 

(b) Two concurrent H-Threads 

H-Thread 0 
M£Jtf Unit FP Unit 

1. load ru 
2. load r^ 
3. load r* t2 = ru + rd 

4. load u* t2 = b x t2 

5. ti = a x r* 
6. tx = u* + ti 
7. Hl.t2 = ti + t2 

H-Thread 1 
MEM Unit FP Unit 

1. load rn 

2. load rs empty t2 

3. load re ti = rn + rs 

4. load rw ti = tx + re 

5. ti = ti + rw 

6. ti = b x ti 
7. u« = ti + t2 

8. store u« 

Figure 5: Example of H-Threads used to exploit instruction level parallelism: (a) single H-Thread, (b) two 
H-Threads. The computation is a smoothing operator using a 7-point stencil on a 3-D grid: u, = u* + axr» 
+ b x (ru + rd + rn + rs + re + rw). 

H-Thread 0 
1    LOOP_0:   compute   bar 

H-Thread 1 
LOOP_I :  compute 

eq bar end gccl• 

branch delay 
slats 

br gccl LOOP_0 

use  gcc3 

empty gcc3 

br gccl LOOP_l 

empty gcclx 

write gcc3 .' 
branch delay 
slots 

Figure 6: Loop synchronization between two H-Threads using MAP global CC registers. 



dependencies are satisfied, a single thread may issue an 
instruction every cycle. Multiple V-Threads may be in- 
terleaved with zero delay, which allows task switching 
to be used to mask even very short pipeline latencies 
as well as longer communication and synchronization 
latencies. 

3.3    Asynchronous Exception Handling 

Exceptions that occur outside the MAP cluster are han- 
dled asynchronously by generating an event record and 
placing it in a hardware event queue. LTLB misses, 
block status faults, and memory synchronizing faults, 
for example, are handled asynchronously. These excep- 
tions are precise in the sense that the faulting operation 
and its operands are specifically identified in the event 
record, but they are handled asynchronously, without 
stopping the thread. 

A dedicated handler in an H-Thread of the event 
V-Thread processes event records to complete the fault- 
ing operations. The event handler loops, reading event 
records from the register-mapped queue and processing 
them in turn. A read from the queue will not issue if 
the queue is empty. For example, on a local TLB miss, 
the hardware formats and enqueues an event record con- 
taining the faulting address as well as the write data or 
read destination. A TLB miss handler reads the record, 
places the requested page table entry in the TLB, and 
restarts the memory reference. The thread that issued 
the reference does not block until it needs the data from 
the reference that caused the miss. Inter-node message 
arrival is treated as an event in which the contents of the 
message are written into the appropriate event queue 
(which serves as the message queue). 

Each H-Thread in the event V-Thread handles one 
class of events. Memory synchronization and status 
faults are run on cluster 0, local TLB misses are run 
on cluster 1, and arriving messages are run on clusters 
2 and 3, depending on the priority of the message. 

Handling exceptions asynchronously obviates the 
need to cancel all of the issued operations following the 
faulting operation, a significant penalty in a 12-wide 
machine with deep pipelines. Dedicating H-Threads 
to this purpose accelerates event handling by elimi- 
nating the need to save and restore state, and allows 
concurrent (interleaved) execution of user threads and 
event handlers. Asynchronous event handling does re- 
quire sufficient queue space to handle the case where 
every outstanding instruction generates an exception. 
To reduce queue size requirements, exceptions that are 
detected in the first execution cycle, such as protec- 
tion violations and some arithmetic exceptions, stall all 
user H-Threads in the affected cluster, and are handled 
synchronously by the local H-Thread of the exception 
V-Thread. 

3.4    Discussion 

There are two major methods of exploiting instruction 
level parallelism. Superscalar processors execute mul- 
tiple instructions simultaneously by relying upon run- 
time scheduling mechanisms to determine data depen- 
dencies [23, 12]. However, they do not scale well with 
increasing number of function units because a greater 
number of register file ports and connections to the 
function units are required. In addition, superscalars 
attempt to schedule instructions at runtime (much of 
which could be done at compile time), but they can only 
examine a small subsequence of the instruction stream. 

Very Long Instruction Word (VLIW) processors such 
as the Multiflow Trace series [4] use only compile time 
scheduling to manage instruction-level parallelism, re- 
source usage, and communication among a partitioned 
register file. However, the strict lock-step execution is 
unable to tolerate the dynamic latencies found in mul- 
tiprocessors. 

Processor Coupling was originally introduced in [13] 
and used implicit synchronization between the clusters 
on every wide instruction. Relaxing the synchroniza- 
tion, as described in this section, has several advantages. 
First, it is easier to implement because control is local- 
ized completely within the clusters. Second, it allows 
more slip to occur between the instruction streams run- 
ning on different clusters (H-Threads), which eliminates 
the automatic blocking of one thread on long latency 
operations of another, providing more opportunity for 
latency tolerance. Finally, the H-Threads can be used 
flexibly to exploit both instruction and loop level paral- 
lelism. When H-Threads must synchronize, they do so 
explicitly though registers, at a higher cost than implicit 
synchronization. However, fewer synchronization oper- 
ations are required, and many of them can be included 
in data transfer between clusters. 

Using multiple threads to hide memory latencies and 
pipeline delays has been explored in several different 
studies and machines. Gupta and Weber explore the 
use of multiple hardware contexts in multiprocessors [8], 
but the context switch overhead prevents the masking 
of pipeline latencies. MAS A [9] as well as HEP [22] 
use fine grain multithreading to issue an instruction 
from a different context on every cycle in order to mask 
pipeline latencies. However, with the required round- 
robin scheduling, single thread performance is degraded 
by the number of pipeline stages. The zero cost switch- 
ing among V-Threads and the pipeline design of the 
MAP provide fast single thread execution as well as la- 
tency tolerance for better local memory bandwidth uti- 
lization. 

4    Inter-node Concurrency Mechanisms 

The M-Machine provides a fast, protected, user-level 
message passing substrate.  A user program may com- 



municate and synchronize by directly sending messages 
or by reading and writing remote memory using a co- 
herent shared memory system layered on the message- 
passing substrate. Direct messaging provides maximum 
performance data transfer and synchronization while 
shared memory access simplifies programming. Remote 
memory access is implemented using fast trap handlers 
that intercept load and store operations that reference 
remote data. These handlers send messages to other 
nodes to complete remote memory references transpar- 
ently to user programs. Additional hardware and soft- 
ware mechanisms allow remote data to be cached locally 
in both the cache and external memory. 

4.1    Message Passing Support 

The M-Machine provides hardware support for inject- 
ing a message into the network, determining the mes- 
sage destination, and dispatching a handler on message 
arrival. For example, Figure 7 shows the M-Machine 
instruction sequences for both the sending and receiv- 
ing components of a remote memory store. The mes- 
sage sending sequence (Figure 1(a)) loads the data to be 
stored into general register MCI. The SEND instruction 
takes three arguments, the target address (Raddr), the 
dispatch instruction pointer (Rdip), and the message 
body length (#1). When the SEND issues, the Global 
Translation Lookaside Buffer (GTLB) translates virtual 
address Raddr into a physical node identifier and sends 
that node a 3 word message containing Rdip, Raddr, and 
MCI. When the message arrives at the destination (Fig- 
ure 7(b)) hardware enqueues it in the priority 0 message 
queue. An H-Thread dedicated to message handling 
jumps to the handler via Rdip, executes a store opera- 
tion and branches back to the dispatch portion of the 
code. 

Message Injection: A message is composed in a clus- 
ter's general registers and transmitted atomically with 
a single SEND instruction that takes as arguments a des- 
tination virtual address, a dispatch instruction pointer 
(DIP), and the message body length. Hardware com- 
poses the message by prepending the destination and 
DIP to the message body and injects in into the net- 
work. Two message priorities are provided: user mes- 
sages are sent at priority zero, while priority 1 is used 
for system level message reply, thus avoiding deadlock. 

Message Address Translation: As de- 
scribed in [19], the explicit management of processor 
identifiers by application programs is cumbersome and 
slow. To eliminate this overhead, the MAP implements 
a Global Translation Lookaside Buffer (GTLB), backed 
by a software Global Destination Table (GDT), to hold 
mappings of virtual address regions to node numbers. 
These mappings may be changed by system software. 
The user specifies the destination of a message with 
a virtual address, which the network output interface 

hardware uses to access the GTLB and calculate the 
physical destination node. 

With a single GTLB entry, a range of virtual ad- 
dresses (called a page-group) is mapped across a region 
of processors. In order to simplify encoding, the page- 
group must be a power of 2 pages in size, where each 
page is 1024 words. The mapped processors must be 
in a contiguous 3-D rectangular region with a power 
of 2 number of nodes on a side. This information is en- 
coded in a single GTLB entry as shown in Figure 8. The 
virtual page field is used as the tag during the fully as- 
sociative GTLB lookup. The starting node specifies the 
coordinates of the origin of the region of mapped pro- 
cessors, while the extent specifies the base 2 logarithm 
of the X, Y, and Z dimensions of the region. The page- 
group length field specifies the number of local pages 
that are mapped into the page group. The pages-per- 
node field indicates the number of pages placed on each 
consecutive processor, and is used to implement a spec- 
trum of block and cyclic inter leavings. 

Message Reception: At the destination node, an ar- 
riving message is automatically placed in a hardware 
message queue. The head of the message queue is 
mapped to a register accessible by an H-Thread (in 
either cluster 2 or 3, depending on message priority) 
in the event V-Thread. The message dispatch handler 
code running in that H-Thread stalls until the mes- 
sage arrives, and then dequeues the dispatch instruc- 
tion pointer (DIP) and jumps to it. This starts execu- 
tion of the specific handler code to perform the action 
requested in the message. Some of the actions include 
remote read, remote write, and remote procedure call. 
The message need not be copied to or from memory, as 
it is accessible via a general register. In order to avoid 
overflow of the fixed size message queue and back up 
of the network, only short, well-bounded tasks are exe- 
cuted by message handlers. Longer tasks are enqueued 
to be run as a user process on a user V-Thread. 

Protection: The M-Machine communication sub- 
strate provides fully protected user-level access to the 
network. The SEND instruction atomically launches a 
message into the network, preventing a user from oc- 
cupying the network output indefinitely. The auto- 
matic translation provided by the GLTB ensures that 
a program may only send messages to virtual addresses 
within its own address space. Finally, restricting the 
set of user accessible DIPs prevents a user handler from 
monopolizing the network input. If an illegal DIP is 
used, a fault will occur on the sending thread before the 
message is sent. 

Throttling: In order to prevent a processor from in- 
jecting messages at a rate higher than they can be con- 
sumed, the M-Machine implements a return-to-sender 
throttling protocol. A portion of a local node's memory 



(a) Message Send 

LOAD 
SEND 

A[0],  MCI 
Raddr, Rdip, #1 

load A[0] into message composition register 1 
send a remote store message to the processor 
containing VA Raddr, with a 1 word body 

(b) Message Receive 
loop:     JHP Rnet 

;    start of remote write code 
HOVE Rnet, Rl 
STORE       Rnet, Rl 
BRANCH     loop 

jump to DIP (remote write) when message arrives 

move virtual address into Rl 
store the body word of the message into memory 
branch back to message dispatch code 

Figure 7: Example of M-Machine code implementing a remote store: (a) Sending a 3 word remote store message. 

(b) Receiving and performing the store. 

42 bits 

Extent 

Virtual Page Starting 
Node 

Page-group 
Length 

Pages/ 
Node Z Y X 

16 bits 6 bits 6 bits 3 bits each 

Figure 8: Format of a Global Destination Table (and GTLB) entry, used to determine a physical node identifier 

from a virtual address. 

is used for returned message buffering. When a mes- 
sage is sent, a counter is automatically decremented, 
which reserves buffer space for that message, should it 
be returned. If the counter is zero, no buffer space 
is available and no additional messages may be sent; 
threads attempting to execute a SEND instruction will 
stall. When the message reaches the destination a re- 
ply is sent indicating whether the destination was able 
to handle the message. If the message was consumed, 
the reply instructs the source processor to increment 
its counter, deallocating the buffer space. Otherwise, 
the reply contains the contents of the original message 
which are copied into the buffer and resent at a later 
time. 

Discussion: The M-Machine provides direct register- 
to-register communication, avoiding the overhead of 
memory copying at both the sender and the receiver, 
and eliminating the dedicated memory for message ar- 
rival, as is found on the J-Machine [6]. Register-mapped 
network interfaces have been used previously in the J- 
Machine and iWarp [2], and have been described by 
*T [20] as well as Henry and Joerg [11]. However, none 
of these systems provide protection for user-level mes- 
sages. 

Systems, like the J-Machine, that provide user ac- 

cess to the network interface without atomicity must 
temporarily disable interrupts to allow the sending pro- 
cess to complete the message. The M-Machine's atomic 
SEND instruction eliminates this requirement at the cost 
of limiting message length to the number of cluster reg- 
isters. Most messages fit easily in this size and larger 
messages can be packetized and reassembled with very 
low overhead. 

Automatic translation of virtual processor numbers 
to physical processor identifiers is used in the Cray 
T3D [5]. The use of virtual addresses as message desti- 
nations in the M-Machine has two advantages. When 
combined with translation hardware, it provides protec- 
tion for user initiated messages, without incurring the 
overhead of operating system invocation, as messages 
may not be sent to processors mapped outside of the 
user's virtual address space. It also facilitates the im- 
plementation of global shared memory. The interleav- 
ing performed by the GTLB, although not as versatile 
as the CRAY T3D address centrifuge or the interleaving 
of the RP3 [21], provides a means of distributing ranges 
of the address space across a region of nodes. 

In contrast to both *T and FLASH [14] which use a 
separate communication coprocessor for receiving mes- 
sages, the M-Machine incorporates that function on its 
already existing execution resources, an H-Thread in 



the event V-Thread. This avoids idling resources as- 
sociated with a dedicated processor. During periods of 
few messages, user threads may make full use of the 
cluster's arithmetic and memory bandwidth. 

4.2    Non-Cached Shared Memory 

Fast access to remote memory is provided transparently 
to the user with a combination of hardware and software 
mechanisms. When a load or store operation causes a 
Local Translation Lookaside Buffer (LTLB) miss, a soft- 
ware trap is signalled. Like the hardware dedicated to 
message arrival, one H-Thread in the event V-Thread 
is reserved for handling LTLB misses. The LTLB miss 
handler code probes the GTLB to determine where the 
requested data is located, and if necessary, sends a mes- 
sage to the destination node. If the data is in fact local, 
the LTLB miss handler fetches the required page table 
entry and places it in the LTLB. Using a small portion 
of the execution resources for fast trap handling reduces 
the latency of both local LTLB misses and remote data 
access. 

The sequence of operations required to satisfy a re- 
mote memory load is shown below. The labels HW and 
SW indicate whether the action is performed by hard- 
ware or software. 

1. HW: Memory operation accesses the cache and 
misses (2 cycles). 

2. HW: LTLB miss occurs, enqueueing an event (2 
cycles). 

3. SW: Software accesses the local page table (LPT), 
probes the GTLB, and composes and sends a 
message containing the referenced and return ad- 
dresses (48 cycles). 

4. HW: Message delivered to remote node (5 cycles). 

5. SW: Message handler fetches requested data from 
memory, formats a reply message, and sends it (29 
cycles). 

6. HW: Return message delivered (5 cycles). 

7. SW: Message handler decodes the original load 
destination register and writes the data directly 
there (41 cycles). 

Timelines for both remote read and write accesses 
are shown in Figure 9. These measurements are esti- 
mates based on prototype message and event handlers 
running on the M-Machine simulator. A user level pro- 
gram running on node 0 makes read and write requests 
to memory on neighboring node 1. Except for the mes- 
sage handler that runs on demand, node 1 is idle. All 
references to memory system data structures in the soft- 
ware handlers are assumed to cache hit. 

Table 1 shows a comparison of preliminary results of 
local and remote access latencies (in cycles). A read 
is completed when the requested data has been writ- 
ten into the destination register. A write is completed 

Access Times (cycles) 
Access Type READ WRITE 

Local Cache Hit 3 2 
Local Cache Miss 13 19 
Local LTLB Miss 61 67 

Remote Cache Hit 138 74 
Remote Cache Miss 154 90 
Remote LTLB Miss 202 138 

Table 1: Comparison of local and remote access times, 
assuming no resource contention. 

when the line containing the data has been fully loaded 
into the cache. The remote read and write accesses are 
larger than their local counterparts due to the software 
intervention required to send the message to the remote 
node. However, the time to perform a remote read that 
hits in the cache is only a twice as large as a local read 
that requires software intervention (LTLB miss). For 
the remote write, which does not require return data, 
the difference is only 10%. 

4.3    Caching and Coherence 

Even though remote accesses are fast, their latency is 
still large compared to local memory references. This 
overhead reduces the ability of the MAP to use the net- 
work and remote memory bandwidth effectively. To 
reduce overall latency and improve bandwidth utiliza- 
tion, each M-Machine node may use its local memory 
to cache data from remote nodes. 

In addition to the virtual to physical mapping, each 
LTLB (and LPT) entry contains 2 status bits for each 
cache block in the page. These block status bits are used 
to provide fine grained control over 8 word blocks, al- 
lowing different blocks within the same mapped page 
to be in different states. This fine grained control over 
data is similar to that provided in hardware based cache 
coherent multiprocessors, and alleviates the false shar- 
ing that exists in other software data coherence sys- 
tems [16]. The two block status bits are used to encode 
the following four states: 

• INVALID: The block may not be read, written, or 
placed in the hardware cache. 

• READ-ONLY: The block may be read, but not writ- 
ten. 

• READ/WRITE: The block may be read or written. 

• DIRTY: The block may be read or written, and it 
has been written since being copied to the local 
node. 

One software policy that uses the block status bits 
fetches remote cache blocks on demand. When a mem- 
ory reference occurs, the block status bits corresponding 
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Figure 9: Timeline for remote read and write accesses. 

to the global virtual address are checked in hardware. If 
the attempted operation is not allowed by the state of 
the block, a software trap called a block status fault oc- 
curs. The trap code runs in the event V-Thread, in the 
H-Thread that is reserved for handling block status and 
synchronization events. The block status handler sends 
a message to the home node, which can be determined 
using the GTLB, requesting the cache block containing 
the data. The home node logs the requesting node in a 
software managed directory and sends the block back. 
When the block is received, the data is written to mem- 
ory and the block status bits are marked valid. If the 
virtual page containing the block is not mapped to a 
local physical page, a new page table entry is created 
and only the newly arrived block is marked valid. The 
remote data may be loaded into the on-chip cache, and 
modifications to the data will automatically mark the 
block state dirty. More complex coherence schemes can 
map blocks from different virtual pages into the same 
physical page, reducing the amount of unmapped phys- 
ical memory. 

The software handlers used to transmit data from 
node to node may implement a variety of coherence 
policies and protocols. This code is easily incorporated 
within the remote read and write handlers described in 
Section 4.2. Using local memory as a repository will 
allow remote data to be cached locally beyond the ca- 
pacity of the local on-chip cache alone. 

Discussion: Directory-based, cache coherent multi- 
processors such as Alewife [1] and DASH [15] implement 
coherence policies in hardware.   This improves perfor- 

mance at the cost of flexibility. Like the M-Machine, 
FLASH [14] implements remote memory access and 
cache coherence in software, but uses a coprocessor. 
However, this system does not provide block status bits 
in the TLB to support caching remote data in DRAM. 
The subpage status bits of the KSR-1 [7] perform a 
function similar to that of the block status bits of the 
M-Machine. 

Implementing a remote memory access and coher- 
ence completely in software on a conventional processor 
would involve delays much greater than those shown in 
Table 1 as evidenced by experience with the Ivy system 
[16]. The M-Machine!s fast exception handling in a ded- 
icated H-Thread avoids the delay associated with con- 
text switching and allows the user thread to execute in 
parallel with the exception handler. The GTLB avoids 
the overhead of manual translation and the cost of a sys- 
tem call to access the network. Finally, the M-Machine 
provides memory-mapped addressing of thread registers 
to allow the operation to be completed in software. 

The major contributors to remote access latency in 
the M-Machine are the search for the faulting address 
in the local page table and decoding the reply message 
(about 40 cycles each). The page-table overhead is only 
incurred when accessing the first block of a page. Access 
to subsequent blocks cause block-status faults (rather 
than page faults) which skip the page-table access. The 
reply decode could be accelerated by prohibiting the 
faulting V-Thread from swapping out during the mem- 
ory operation. However, this would complicate schedul- 
ing and remote handling of potentially long latency syn- 
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chronizing memory operations. 

5    Conclusion 
In this paper we have described the architecture of the 
M-Machine with an emphasis on its novel features. The 
M-Machine is a 3-D mesh, each node of which contains 
a multi-ALU processor (MAP) and 8 MBytes of syn- 
chronous DRAM. Each MAP chip consists of four 64-bit 
3-issue clusters connected by a cluster switch, a 4-way 
interleaved on-chip cache, an external memory interface, 
and on-chip network interfaces and routers. 

Instruction level parallelism is exploited both within 
a cluster and across clusters using H-Threads. An 
H-Thread may communicate and synchronize through 
registers with H-Threads on different clusters but 
within the same V-Thread. A 27 point stencil com- 
putation on 4 H-Threads (12-wide issue) has a static 
instruction length half that of 1 H-Thread (3-wide is- 
sue). 

To increase use of the local memory and execution 
bandwidth, multiple tasks, called V-Threads, are inter- 
leaved on a cycle-by-cycle basis independently on each 
of the clusters. Each cycle, a different thread may be 
selected for execution, or if only one V-Thread is res- 
ident, it may issue an instruction every cycle on each 
cluster. 

The M-Machine has a user-level, protected, fast mes- 
sage passing substrate to reduce communication and re- 
mote memory latencies. Messages are composed in gen- 
eral registers and sent via a user level SEHD instruction. 
Arriving messages are extracted by a system-level soft- 
ware message dispatch handler, which is always resident 
in the event V-Thread. The message contents are ac- 
cessed via a register mapped queue. The message need 
not be copied to or from memory on either the sending 
or receiving side. Two level translation is used to inde- 
pendently relocate objects in the physical address space 
on a node, and in the processor namespace. 

The fast message system is used to provide the user 
with transparent access to remote memory. When a 
user's load or store instruction traps to software on a 
LTLB miss, a message is sent to a remote node to per- 
form the access. While slower than local accesses, a re- 
mote load can be satisfied in 138 cycles, while a remote 
store can be satisfied in 74 cycles. In order to facili- 
tate local caching of remote data, 2 status bits for each 
block (8 words) in a page are added to the LTLB and 
page table entries. When an invalid block is accessed, a 
trap to software occurs which can retrieve the missing 
block from a remote node, copy it into local memory, 
and mark the status bits valid. 

A cycle-accurate simulator of the M-Machine has 
been completed and is being used for software develop- 
ment. M-Machine software is being designed and imple- 
mented jointly with the Scalable Concurrent Program- 
ming group at Caltech. The Multiflow compiler [17] is 

being ported to the M-Machine to generate long instruc- 
tions spanning multiple clusters. It is currently able to 
generate code for a single cluster. A prototype runtime 
system consisting of primitive message and event han- 
dlers has also been implemented. The hardware design 
of the MAP is currently underway; 80% of the modules 
have been designed at the RTL level and some layout 
has begun. The MAP will be implemented on a single in- 
tegrated circuit with a projected area of 17mm x 18mm 
in 0.5/zm CMOS with 5 metal layers. Tapeout is ex- 
pected in 1996. 

The M-Machine addresses the issues of non-uniform 
technology scaling and of programmability. By chang- 
ing the ratio of processor to memory area, the 
M-Machine better balances cost and improves the uti- 
lization of the increasingly critical memory bandwidth. 
The M-Machine increases the ratio of processor to mem- 
ory silicon area to 11% from 0.13% for a typical 1996 sys- 
tem. A 32-node (128 clusters) M-Machine with a total 
of 256 MBytes of memory requires 50% more area than a 
uniprocessor with the same amount of memory but pro- 
vides 128 times as much peak performance, a 85:1 im- 
provement in peak-performance/area. This increase in 
processing resources allows the M-Machine to saturate 
the costly DRAM bandwidth even for problems with 
good locality and thus runs programs faster allowing a 
fixed-size memory system to run more programs per unit 
time. The 85:1 improvement in peak-performance/area 
makes the increased parallelism of the M-Machine cost 
effective even in cases where only a small fraction of its 
peak performance is realized. 

The M-Machine addresses the problem of paral- 
lel software by supporting an incremental approach to 
parallelization. Unlike conventional parallel machines, 
the M-Machine can efficiently run a sequential pro- 
gram that uses all the machine's memory, including 
that on remote nodes. A shared address space, high- 
performance messaging, and caching remote data in lo- 
cal DRAM provide fast access to remote data. The se- 
quential program can then be divided into tasks, such 
as loop iterations or subroutines, that can be executed 
in parallel. The ability to support fine-grain paral- 
lelism increases the number of suitable tasks and al- 
lows extraction of more parallelism from small prob- 
lems. Support for synchronizing memory operations and 
global addressing simplifies user-level communication 
and synchronization between tasks and reduces over- 
head. Caching in DRAM automates much of the data 
placement and migration problem. For the cases where 
a programmer wants to extract the maximum perfor- 
mance, fast, protected, user-level messages may be em- 
ployed. 

We expect that the architecture concepts demon- 
strated in the M-Machine will be useful in machines 
ranging from single-node personal computers, through 
workstations with tens of nodes, to servers with hun- 

12 



dreds to thousands of nodes. Memory bandwidth and 
capacity are becoming the dominant factor in the cost 
and performance of systems of all scales. By chang- 
ing the processor/memory ratio, providing methods for 
extracting parallelism at all levels, and supporting an 
incremental approach to parallelism, the M-Machine's 
mechanisms will lead to more cost effective and pro- 
grammable machines across the price-performance spec- 
trum. 
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